Interaction of molecular and atomic hydrogen with „5,5... and „6,6... single-wall carbon nanotubes

نویسندگان

  • J. S. Arellano
  • L. M. Molina
  • J. A. Alonso
چکیده

Density functional theory has been used to study the interaction of molecular and atomic hydrogen with ~5,5! and ~6,6! single-wall carbon nanotubes. Static calculations allowing for different degrees of structural relaxation are performed, in addition to dynamical simulations. Molecular physisorption inside and outside the nanotube walls is predicted to be the most stable state of those systems. The binding energies for physisorption of the H2 molecule outside the nanotube are in the range 0.04–0.07 eV. This means that uptake and release of molecular hydrogen from nanotubes is a relatively easy process, as many experiments have proved. A chemisorption state, with the molecule dissociated and the two hydrogen atoms bonded to neighbor carbon atoms, has also been found. However, reaching this dissociative chemisorption state for an incoming molecule, or starting from the physisorbed molecule, is difficult because of the existence of a substantial activation barrier. The dissociative chemisorption deforms the tube and weakens the CuC bond. This effect can catalyze the shattering and scission of the tube by incoming hydrogen molecules with sufficient kinetic energy. © 2002 American Institute of Physics. @DOI: 10.1063/1.1488595#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NBO analysis and theoretical thermodynamic study of (5,5) & (6,6) armchair carbon nanotubes via DFT method

In the present work, the structural and electronic properties, and conductivity of (5,5) and (6,6) Single Walled Carbon Nanotubes in the ground state have done by using the Hartree-Fock and density functional theory DFT-B3LYP/6-31G* level. Delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by NBO (natural bond orbital) analysis. These methods a...

متن کامل

NBO analysis and theoretical thermodynamic study of (5,5) & (6,6) armchair carbon nanotubes via DFT method

In the present work, the structural and electronic properties, and conductivity of (5,5) and (6,6) Single Walled Carbon Nanotubes in the ground state have done by using the Hartree-Fock and density functional theory DFT-B3LYP/6-31G* level. Delocalization of charge density between the bonding or lone pair and antibonding orbitals calculated by NBO (natural bond orbital) analysis. These methods a...

متن کامل

Sulfur Dioxide Internal and External Adsorption on the Single-Walled Carbon Nanotubes: DFT Study

Density-functional theory is used to investigate sulfur dioxide physisorption inside and outside of single-wall carbon nanotube of (5,0) and (5,5). This study is conducted at B3LYP/6-31G* level of theory. Sulfur dioxide molecule is studied with axis oriented parallel or perpendicular to the nanotube wall. Both internal and external adsorption on nanotubes is increased with the angle of interact...

متن کامل

Investigation of Sup90-Dota and interaction with Carbon nanotubes; A Semi-empirical study

The investigation of the anticancer drugs will be important because of the proliferation ofcancer. We want to take steps to improve public health. The combination of two carbon nanotubes (singlewall nanotube and multi-wall nanotube) and Sup90-Dota (an anticancer drug) was investigated basedon Molecular Mechanic and Semi-Empirical methods. Our goal is to investigate the transfe...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002